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Residual Stresses in a Laminated Shell During Cure

800-Yong Lee" and Jong-Koo Kang**
(Received February 6, 1999)

In this paper, a viscoelastic finite element analysis was performed to investigate residual

stresses occurred in a laminated shell during cure. A viscoelastic constitutive equation that can

describe stress relaxation during the cure was defined as functions of degree of cure and

temperature, and derived as a recursive formula used conveniently for numerical analyses. The

finite element program was developed on the basis of 3-D degenerated shell element and the first

order shear deformation theory, and was verified by comparing with an exact solution of the one

dimensional problem. Effects of chemical shrinkage and stacking sequence on the residual

stresses in the laminated shell during the cure were investigated. The results showed that there

were big differences between viscoelastic stresses and linear elastic stresses calculated by

considering thermal deformation and the chemical shrinkage induced by the degree of cure.

Key Words: Viscoelastic Residual Stress, Cure, Degree of Cure, Chemical Shrinkage,

Laminated Shell, Finite Element Analysis
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1. Introduction

A residual stress occurred in fiber-reinforced

composite materials during cure is one of severe

factors that deteriorate performance of a compos­

ite structure. The residual stress can cause matrix

cracking in composites before external loads are

applied and thus can reduce the stiffness of the

composites. In addition, since the residual stress

means pre-loading, it can cause the degradation

of strength. Therefore, the residual stresses in­

duced during the cure should be considered in the

design of the composite structure because they

generally have bad effects on the stiffness and

strength of the composite structure.

The first analysis of the residual stresses in a

thermoset matrix composite during the cure was

performed by Hahn and Pagano (1975). They

calculated linear elastic residual stresses under the

assumption that a laminate was in a stress-free

state at cure temperature immediately before cool-
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down. Hahn (1976) predicted the linear elastic

residual stresses in a laminated plate during the

cure using a laminate theory and studied their

effects on ply failure. Bogetti and Gillespie (1992)

analyzed the cure-induced residual stresses for

thick laminates using an incremental elastic

laminated plate theory and investigated the effect

of chemical shrinkage on the development of

residual stresses. Hodges et at. (1989) presented

an experimental approach to find optimal curing

conditions for reducing the residual stresses of

carbon fiber/epoxy composite. Kim and Hahn

(1989) analyzed elastic residual stresses during

the cure by monitoring warpage of unsymmetric

cross-ply laminates and by relating the warpage

to the residual stresses. White and Hahn (1991)

developed a process model for the investigation of

viscoelastic residual stress development in lami­

nates during cure processing and validated the

model by the intermittent cure of unsymmetric

cross-ply laminates in which processing induced

residual curvatures were measured. Kim (1996)

introduced a viscoelastic constitutive equation

depending on degree of cure and temperature by

performing stress relaxation tests and investigated

the residual stresses of Hercules AS4/3501-6
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composite during the cure by analyzing two

dimensional and axisymmetric problems.

In this study, using viscoelastic data provided

by Kim(1996), the residual stresses occurred in a

laminated shell during the cure will be investigat­

ed by deriving a viscoelastic constitutive equation

and by using a finite element method. The vis­

coelastic finite element program will be developed

on the basis of 3-D degenerated shell element and

the first order shear deformation theory, and will

be validated by comparing with an exact solution

of the one dimensional problem. Effects of tem­

perature, degree of cure, chemical shrinkage, and

stacking sequence on the residual stresses induced

in the laminated shell during the cure will be

considered.

where a- represents a shift factor expressed as

functions of the degree of cure and the tempera­

ture. The time-dependent relaxation moduli C;i

in Eq. (3) are expressed in a finite exponential

series of the form (Kim, 1996):

Cij(a,~) = CiJ+ C:; ~ Wm exp(_~(a»)
m=l rm a

(5)

where CiJ and Ci} represent fully relaxed moduli

and unrelaxed moduli, respectively and C:;= Ci}
- CiJ. Tm and Wm are relaxation times and
weighting factors at the given degree of cure. All

parameters described above are determined from

a viscoelastic experiment. Substituting Eq. (5)

into Eq. (3), the viscoelastic constitutive equation

is written as Eq. (6)

(8)

(7)

(6)

(Jf=CiJtH C:; ~ Wm t" exp(
m=l )0

atJd-- rar

(Jf= (t[CiJ+ c:~ Wm ex p(
)0 m=l

atJdar t

We will now proceed to simplify the hereditary

integral appearing in the constitutive equation in

the manner proposed by Henriksen (1984) and

Kennedy and Wang ( 1994) and deri ve a recursi ve

formula that the solution at the current time t can

be obtained from the solution known at the

previous time t-ilt. First of all, Eq. (6) can be

written as follows

This can be written in two parts for a sufficient­

ly small time increment ilt as follows.

and then the integral III Eq. (7) IS defined as

below.

( I)

(2)

2. Viscoelastic Constitutive Equation

where (J and E: represent the stress and strain, and

C, (3, and TJ represent relaxation modulus, coeffi­

cients of thermal expansion, and coefficients of

chemical shrinkage, respectively. ilT and ila
indicate the changes in temperature and degree of

cure. t denotes time and t is a dummy variable for

integration. If the material shows thermo­

rheologically simple behavior at constant degree

of cure ao and there is no initial strain at time t
=0, then Eq. (I) can be written in the integral

form as

A linear viscoelastic constitutive equation for

relaxation of residual stresses occurred during

cure can be expressed by the following hereditary

integral (Flaggs and Crossman, 1981 and Lin and

Hwang, 1989):

(3)

where ~ represents a reduced time and is

defined as follows (Kim, 1996).

t':" (qJm= )0 exp

+1 t

expl
t-.dt

(9)

and the increment in the reduced time il~ is

e ds
~t=)o aT(ao, T(5» ,

e- t" ds
-)0 a r (ao, T(5» (4)

The reduced time can also be given by

~t=~t-4t +ile (10)
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defined by Eq. (4) as follows. Integrating this equation gives

Using Eq. (10), the first integral term of Eq.
(9) is expressed as

Assuming that the degree of cure and the tem­

perature are constant during the sufficiently small

time step Llt, Eq. (11) can be approximated as

I
t-&t ( e« - c r ) r)€r11= exp S!. c, __J dt

o Tm ar

i" (~) ( t;t-&t_g")= exp ~ exp
o rm Tm

BtJd
----ar r

(18)t_ rin [ (Llt;')Jr m- Llt;' 1-exp ------;:,:

Therefore, substituting Eqs. (14) and (17) into

Eq. (9) gives

I rin [1 (Llt;t)] (-t -t-at)2= Llt;t -exp - rin Cj- Cj

=r~(gj- gj-M) (17)

where r~ is defined as

qJm=exp( - :Jl~t )qJ~M +r~(gj- gj-M)

(19)

and by substituting Eq. (19) into Eq. (7), the

viscoelastic constitutive equation can be formulat­

ed as

(12)

(II)

and assuming that the relaxation time t« is con­

stant for the sufficiently small time step /lt in

order to take advantage of the recursive formula,

the above equation can be written approximately

as follows (Kennedy and Wang, 1994).

N

af=[Cij+ c: 22 Wmr~]sj (20)
m=l

+C ' ~ w: [ ( Llt;') t-MijL.., m exp ~~ qjm
m=l rm

- rt -t-&t]1 mE)

-t -xt-r at: ( Ct)J:'Cj- Cj ex --"'- ' ex
Llt p rin $'." p

(21)

where C represents the first bracket term in Eq.

(20) called a time-dependent stiffness matrix and

H represents the second term in Eq. (20) called
a hereditary stress vector. From a computational

point of view, Eq. (20) is much easier to deal

with than Eq. (7) because Eq. (20) requires a

knowledge of quantities at the previous time t >:

dt , while Eq. (7) requires a knowledge of quan­

tities over the complete history of the response of
the material.

where the initial values of r:;. and qJm at the time
t =0 are I and 0, respectively. Equation (20) can

be written in the form of vectors as follows.

3. Formulation of Viscoelastic Finite
Element

An equilibrium equation at an arbitrary time t

is expressed by the principle of virtual work.

laeT6 d v = lSuTfsdA+ lSuTfbdV (22)

where the superscript T denotes transpose, V
and A represent volume and area, and Bu. f s, and

(15)

( 14)

constant

( ~) t':" (11~exp - rin-&t)o exp

BtJd-- r
Br

=exp( - rf~:t )qJ~&t

I t (t;' g" )at r
12 = exp ---= --jdt

t-at Tm Br

~ sj- g;-&t (L)l t
(~)At exp - t exp t dt

LJ rm t-at rm
(16)

If the relaxation time is constant, Eq. (14) will

be an exact expression rather than an approxi­

mate one. In order to derive the second integral in

Eq. (9), let us assume that the change in the strain

is linear in an interval of t-Llt< r< t, Namely,

ati ~ tj- gj-M
Br dt

Using Eqs. (12) and (15), and assuming again

that the relaxation time is constant for Llt, the

second integral in Eq. (9) is derived as follows.
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f b represent virtual displacement, surface traction,

and body force vectors, respectively. Substitution

of Eq. (21) into the above equation leads to

lSeTCedV= lSuTfsdA+ lSuTfbdV

+ lSuTCetcdV -lSeTHdV

(23)

where etc represents thermal and chemical shrink­

age strains defined by the second and third terms

in the right hand side of Eq. (2).

On the basis of 3-D degenerated shell element

and the first order shear deformation theory

(Chao and Reddy, 1984 and Panda and Natara­
jan, 1981), the displacement vector u in an

isoparametric element consisting of p nodes is
defined as (Bathe, 1982)

(29)

where C is the modulus recalculated to satisfy a

condition of plane stress using the modulus C
given by Eq. (21) (Bathe, 1982).

4. Degree of Cure, Shift Factor and
Relaxation Time

The degree of cure a is defined as the ratio of

the heat of reaction released up to time t and the

total heat of reaction (Lee et aI., 1982 and Dusi et

aI., 1987). If the degree of cure is zero, it means

that composites are uncured. If the degree of cure

is one, it means that the composites are fully

cured. The degree of cure at the time t is calcu­

lated by

Since Hercules AS4/350 1-6 composite is used

in this paper, the rate of the degree of cure for

Hercules 3501-6 resin is determined expenrnen­

tally as below (Lee et aI., 1982).

r; = (kl+k2a) (I-a) (O.47-a) (a::;;:O.3)

(31)

PIP
U=L:.Nk(~, Tj) iik+-L:.Nk(~, Tj)tkl;LiV k

k=l 2 k~l

(24)

where ~, n- I; denote local coordinates of the

element and ti", N\ t", Li V k represent the
displacement vector, shape function, thickness,

and incremental normal unit vector of the k-th

node in the element, respectively. The strain ten­

sor e is written as

(Ida
ai.t) =)0 dtdt (30)

e> ~ (uV+Vu) (25) (a>O.3)

Expressing a virtual displacement vector au
and a virtual strain vector oe by a function of a

virtual nodal displacement vector oti using Eqs.

(24) and (25) gives

Constants kl , kz, ka are defined as

kl = Al exp ( - LiEdRT)

kz=Azexp( -LiEz/ RT)
ka=Aaexp ( - LiEa/ RT)

(32)

where Nand B represent a shape function matrix

and a displacement-strain matrix, respectively

(Bathe, 1982). By substituting Eq. (26) into Eq.

(23), the viscoelastic finite element formulation at

the arbitrary time t is summarized as

au = NSti, Se=BSti

Kti=R

(26)

(27)

where R is the universal gas constant, and A h A2'
A a and L1Eh L1E2, L1Ea represent the pre­
exponential factors and activation energies of

which values are presented in Table I. The shift

factor aT of AS4/3501-6 composite is functions

of the degree of cure and the temperature, and

defined as (Kim. 1996)

where the time-dependent stiffness matrix K and

the force vector R are given by

(33)

where the values of constants a, and az are 1.4

and 0.0712, respectively, and T; denotes the refer­

ence temperature determined as 2Ye. The relaxa­

tion time t« is a function of the degree of cure and

determined experimentally as follows (Kim,
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Table 1 Cure kinetics constants of Hercules 3501-6

resin.

R(J/mol OK) 8.314X 103

A,(min- ') z.iot x io-

A2(min- l
) -2.014X 109

&(min- l
) 1.960X 105

LJE, (L'rnol) 8.07X 10·

LJE2(J/mol) 7.78x 10·

LJE3(J/mol) 5.66xl0·

Table 2 Relaxation time and weighting factors at

reference degree of cure. (ar=0.98)

m f m (min) Wm

I 2.922137e+ I 0.0591334

2 2.921437e+3 0.0661225

3 1.82448e+5 0.0826896

4 1.103105ge+7 O. 112314

5 2.8305395e+8 O. 154121

6 7.9432822e+9 0.2618288

7 1.953424e+ II O. 1835594

8 3.3150756e+ 12 0.0486939

9 4.9174856e+ 14 0.0252258

1996) .

t« (a) = 10ILoglrm(ar)}+f(al-(a-ar)LogPm)})

!(a) =0.0536+0.0615a+0.9227if (34)
109.9

Am= fm(aT)

where a- represents the reference degree of cure

and is 0.98. The relaxation times t« (aT) corre­

sponding to a- and the weighting factors Wm are

presented in Table 2.

5. Numerical Results and Discussion

Material properties of Hercules AS4/350 1-6

composite used in analysis are presented in Table

3. These values were used to calculate the moduli

Cij given by Eq. (5). Since stress relaxation in the

direction of a fiber can be neglcted, components

Table 3 Mechanical properties of AS4/3501-6 used

in calculatins.

Young's modulus, Ell 125.38 GPa

Young's modulus, E 22 8.1 GPa

Young's modulus, E 33 8.1 GPa

Shear modulus, G'2 4.1 GPa

Shear modulus, Gl3 4.1 GPa

Shear modulus, Gz3 2.75 GPa

Poisson's ratio, !l12 0.25

Poisson's ratio, !l13 0.25

Poisson's ratio, !l23 0.47

Thermal expansion coeff., /311 O.5e-6 IrC

Thermal expansion coeff., /322 35.3e-6 IrC

Thermal expansion coeff., /333 35.3e-6 IrC

Chemical shrinkage coeff., 7jll - 1.67e-4

Chemical shrinkage coeff., TJ22 - 8.8Ie-3

Chemical shrinkage coeff., TJ33 -8.8Ie-3

Cll' C,2, and C,3 related to the fiber direction
among the moduli Cij were assumed to be linear­

ly elastic. The fully relaxed modulus C;j is experi­

mentally determined by 117 times the unrelaxed

modulus Ct. The element used for the finite

element analyses was a 8-node degenerate shell

element and 2 X 2 X 2 Gauss integration points

were used at each layer of the element to prevent

shear locking. Because the accuracy of numerical

results depends on the time increment Lit, the

finite element analyses were executed for three

time increments Lit = 10 sec, 30 sec, and I min in

order to examine the convergence of numerical

solutions and it was found that there was no big

difference between them. Therefore, to save

computational time, the time increment Lit = Imin

was used for the numerical analyses presented

below.

In order to verify the finite element program

developed in this study, the following procedure

was carried out. Since there does not exist an

exact solution available for comparing with

results calculated in this study, we developed a

model as following: a laminated plate, of which
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both ends were clamped, was considered and the

fiber orientation, length, width, and thickness of

the plate were 90°, 100mm, 10mm, and 2mm,

respectively. If the degree of cure is constant and

the temperature is given by L1Th(t) where h(t)

is a unit step function, the exact solution for a one

dimensional problem can be obtained from Eq.

(6) as follows.

6i=[C2'2+ C:i2 ±Wmexp(-_t_)J (-(322L1T)
m=! [maT

(35)

In the process of deriving the above equation,

the total strain C2 was given as zero because the

ends of the plate were clamped, and 62 represents

a transverse stress normal to the fiber direction.

The plate shown in Fig. I was divided by 10

meshes in the length and 2 meshes in the width for

the finite element analysis. Total number of ele­

ments were 20. When the degree of cure and the

temperature change were 0.9 and 170'C, respec­

tively, the results calculated by the exact solution

and the finite element analysis were compared in

Fig. 2. The result of the finite element analysis

was calculated at the center of the plate. Because

two results agree well each other as shown in Fig.

2, validation of the finite element program devel­

oped in this paper can be accomplished.

To calculate the residual stresses during cure in

this study, a cylindrical laminated shell as shown

in Fig. 3 was selected. The radius and length of

the shell were 100 mm and the thickness was 2

mm. The arc angle of the shell was 90°. The

laminated shell consisted of 8 plies and therefore

the thickness of a ply was 0.25 mm. All four edges

of the shell were given as free and temperature

distribution was assumed to be uniform. For the

finite element analysis, the laminated shell was

uniformly divided by 4x4 elements. Total num­

bers of the element and node were 16 and 65,

respectively. A cure cycle used in the calculations

was presented in Fig. 4. Total cure time was 300

minutes, and temperatures at the first dwell

known as a consolidation stage and at the second

dwell known as a cure stage were defined as

12
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0.6 e,

04 j
02 "
0.0
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!l:gIl:eofaJre

e: 150

...
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~ 50

200,---------------,

, /, /, /

'~OOmm .', /, /, /, /
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Fig. 3 Geometry of the cylindrical laminated shell.

7060

• Exact solution
--Finiteelement aralysis

10 20 30 40 50

Thne, t (min)

u=O.9
L\T= 170'C

Fig. 1 Geometry of the clamped laminated plate.

100 rnrn

-5r-----------------,

Fig. 2 Comparison of the finite element analysis
with the exact solution for the transverse
stress in the laminated plate.

nme, t(min)

Fig. 4 The tempeature and the degree of cure during
cure.
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Fig. 5 Comparison of the viscoelastic transverse
stress with the linear elastic transverse stress
during cure.

[16°C and I7TC. respectively. The degree of cure

.alculated for this cure cycle was presented in Fig.

4 as dot lines and increased rapidly near the time

at 100 minutes.

To investigate the effect of viscoelasticity on the

residual stresses in: the laminated shell during the

cure. the analyses were performed for [0/0/90/
90J s laminate where a positive ply orientation
was measured counterclock wise with respect to

Xl axis shown in Fig. 3, and the numerical results

were presented in Fig. 5 where transverse normal

stresses calculated for both viscoelastic and linear

elastic analyses considering thermal deformation

and cure-induced chemical shrinkage simultane­

ously were compared. These stresses were calcu­

lated at the first ply 0° and near the center of the

shell, and quite different as shown in Fig. 5.

Especially, it was found that the viscoelastic stress

was considerably relaxed with the advance in

cure, and that the final residual stress for the

viscoelastic analysis was much lower than that for

the linear elastic analysis. Generally, calculating

.he residual stress using the linear elastic analysis,

the stress is assumed to be free at the second dwell

called the cure stage and calculated only at the

cooling stage. Under this assumption, the calcu­

lated linear elastic stress was 38.08 MPa during

cooling as shown in Fig. 5 and the final viscoelas­

tic stress was 34.0 MPa at the end of cure. This

indicates 12% difference with respect to the vis­

coelastic stress and, in addition, such a linear

elastic analysis has disadvantage that can not

caiculate the residual stress in the total process of

Time, t (min)

Fig. 6 Effect of chemical shrinkage on the transverse
stress during cure.

20

~ 10

=b

I
0

-10
-0- [0IG'90/90~

] -0- [0145/90145],
;a -20 ----4--- [0/0I45/45~

.e -----.- [0160145/-30].
'gf

-30.s
0 50 100 150 200 250 300

Time, t (min)
Fig. 7 Comparison of longitudinal stresses at the

first ply (0 degree) during cure.

cure. Next, the result of the analysis performed for

examining the effect of chemical shrinkage on the

residual stress was shown in Fig. 6. As shown in

the figure, the final residual stress calculated with

the chemical shrinkage was greater than that

calculated without the chemical shrinkage. There­

fore, it was recognized that the chemical shrink­

age caused the final residual stress to be in­

creased.

Finally, the analysis was executed for laminat­

ed shells consisting of [0/0/90/90Js, [0/45/90/
-45Js, [0/0/45/-45Js, [0/60/45/-30Js stacking
sequences. Longitudinal and transverse normal

stresses are presented in Fig. 7 and Fig. 8. Each

stress was calculated at the first ply 0° and near

the center of the shell. For cross-ply and quasi

-isotropic laminates. the transverse stresses as

well as the longitudinal stresses were almost the

same each other. Especially, the transverse normal

stresses for all stacking sequences show to be
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[0I6<Y45/-30L

6

4

---<>- [<y<Y9QI9()L ~
---<>- [<Y45f901-45], ~

----<>- [<Y<Y45/-45], b 0

~ [<Y6Ql45/-30], !
rn -2

J -4

-6
0 50

~O

~60

~45

~-30

100 150 200 250 300

Time,t (min)
Comparison of transverse stresses at the first
ply (0 degree) during cure.

orientation before the cooling stage

Fig. 8

o 50 100 150 200 250 300

Fig. 11
'TIme,t(min)

Shear stress development at each ply during
cure.

nearly identical before the cooling stage. Residual

stresses at each ply of [0/60/45/-30J8 laminated

shell were presented in Figs. 9-11. Final maxi­

mum longitudinal, transverse, and shear stresses

were occurred at -30 0 ply, and transverse stresses

were also almost the same irrespective of ply

5. Conclusions

In this study, the viscoelastic finite element

analysis was performed to investigate the residual

stresses occurred in laminated shells during the

cure. The viscoelastic constitutive equation that

can describe the stress relaxation during the cure

was defined as functions of degree of cure and

temperature, and derived as a recursive formula

used conveniently for numerical analyses. The

finite element program was developed on the

basis of 3- D degenerated shell element and the

first order shear deformation theory, and verified

by comparing with the exact solution of the one

dimensional problem.

To investigate the effect of viscoelasticity on the

residual stresses in the laminated shell during the

cure, both the viscoelastic and linear elastic ana­

lyses were performed for [0/0/90/90]. laminate

considering thermal deformation and chemical

shrinkage simultaneously. The results showed

that there were big differences between the vis­

coelastic stresses and the linear elastic stresses.

The effect of the chemical shrinkage and various

stacking sequences on the residual stresses in the

laminated shells during the cure was also

examined.

In conclusion, to predict more accurately the

residual stresses occurred in the laminated shell

during the cure, the viscoelastic analysis consider­

ing the stress relaxation and the chemical shrink­

age as well as the thermal deformation should be

~O

~60

~-45

~-30

[0I6<Y45/-30L

50 100 150 200 250 300

'TIme, t(min)
Transverse stress development at each ply
during cure.

35r---------------,

Fig. 10

20 [<Y6Ql451-30L

~ 0

=b

I
-20

---<>- 0
-40 ---<>- 60

] ----<>- 45

.s -00 ~-30

'i -eo
oS

0 50 100 150 200 250 300

Time, t (min)

Fig. 9 Longitudinal stress development at each ply
during cure.
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carried out.
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